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ABSTRACT
In order to begin to solve many of the problems in the do-
main of cyber security, they must first be transformed into
abstract representations, free of complexity and paralysing
technical detail. We believe that for many classic security
problems, a viable transformation is to consider them as an
abstract game of hide-and-seek. The tools required in this
game – such as strategic search and an appreciation of an
opponent’s likely strategies – are very similar to the tools re-
quired in a number of cyber security applications, and thus
developments in strategies for this game can certainly ben-
efit the domain. In this paper we consider hide-and-seek
as a formal game, and consider in depth how it is allegor-
ical to the cyber domain, particularly in the problems of
attack attribution and attack pivoting. Using this as moti-
vation, we consider the relative performance of several hide
and seek strategies using an agent-based simulation model,
and present our findings as an initial insight into how to
proceed with the solution of real cyber issues.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Experimentation, Security

Keywords
Cyber Security, Hide-And-Seek Games, Search Games, Agent-
Based Modelling

1. INTRODUCTION
Many classic problems in cyber security are too complex
to approach in their natural form. That is, these problems
contain such a vast array of entities, parameters and techni-
cal details, that attempts to apply existing problem-solving
methodologies to them often lead to unhelpfully specific and
highly complex solutions. For example, many instances of
existing agent-based cyber research, are based on models
that attempt to capture too much of the domain [8, 10].
To address this, we abstract complex cyber security issues
to more fundamental problems, and use the tools of agent-
based modelling and simulation to investigate them at this
basic level, rather than in their concrete and detailed form.
By doing so, we aim to explore some of the more thematic
problems of cyber security, and produce more intuitive and
generalisable results.1 These results are able to guide future
research, and serve as heuristics to help solve the original
problem.

As an example, we consider the currently open problem of
attack attribution [9], in which the task of a network ad-
ministrator is not only to locate the origin of an attack, but
also to present a chain of attribution, through proxy servers
and spoofed Internet Protocol (IP) addresses, back to the
targeted network. This is a complex problem with a num-
ber of technical facets. However, in many respects, what
the network administrator is faced with is a simple game
of hide-and-seek : the attacker has situated themselves on a
network and it is the administrator’s goal to locate this at-
tacker by traversing the network’s connections for account-
ability. Moreover, the attacker normally does not wish to be
found, and has thus chosen their position strategically, in an
attempt to make the administrator’s goal as hard as possible
— an adversarial element that needs to be considered when
a search is undertaken. Therefore, in this scenario, the game
serves as a useful abstraction; investigating strategies for it

1Our process of abstraction is identical with that used else-
where in computer science (e.g. Turing machines for compu-
tation), as well as in domains such as physics (e.g., planets
assumed to be perfect spheres) or economics (where so-called
stylised facts are used to calibrate models).
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can yield some insight into how best to proceed with related
problems. Indeed, not only are the dynamics of hide-and-
seek games of interest in their own right, but we also believe
that the principles of such a game are widely applicable to
a number of other security scenarios.

In the remainder of this paper, we consider a number of
different strategies for both hiding and seeking, within an
agent-based model (ABM), in order to better understand
the dynamics of adversarial interactions in the cyber do-
main. The games we will study have been considered by
game theorists, such as [5, 3], and similar game-theoretic
approaches have been applied to conventional security prob-
lems, e.g., [16]. However, the models used in this work are
often predicated on an unrealistic assumption of opponent
rationality. Even if opponents are rational, they may ex-
hibit apparently-irrational behaviour when they are repre-
sented by software agents, which are susceptible to bugs or
errors. Through simulation, we believe we are able to more
freely explore the potential for irrational behaviour. More-
over, our long-term interest is in the dynamics of interacting
strategies, under different environmental conditions, and the
intractability of these problems means that computational
simulation is normally the only means we have available.

2. BACKGROUND
Before considering different hide-and-seek strategies, we first
introduce a model of hide-and-seek games, and explain where
this sits in relation to existing work. Following this, we con-
sider how the components of such a model relate to real
problems of cyber security.

2.1 Hide-and-seek
Hide-and-seek games belong to a wider class of games known
as Search Games, which generalise the notion of one agent, a
seeker, attempting to locate another agent, the hider. This
search is conducted over a specific space, such as a net-
work. The topology of this network constrains the move-
ments of the players. Several mathematical studies of these
games have been carried out to date, most notably by Steven
Alpern and Shmuel Gal [5, 7]. When referring to hide-and-
seek games, we adopt a similar model: we consider two
players, H the hider and S the seeker; ‘he’ and ‘she’, re-
spectively. We represent the graph that these two players
are situated upon as G = (V,E), where V is a set of nodes,
and E a set of edges (paired vertices), such that E ⊆ V ×V .
Let n = |V |. The edges of this graph are weighted such
that there is an explicit cost associated with its traversal:
Cost : E → {0, . . . , c}. In our model, this cost is deter-
mined according to a given random distribution between 0
and an upper bound c. The cumulative traversal cost in-
curred by a seeker serves as a payoff to the hider, while its
inverse is a payoff to the seeker.

In addition, we introduce a set of nodes, selected by a hider,
within which to conceal a series of objects. We refer to this
set as H (where H ⊆ V ). Let k = |H|. This subset is
selected according to the hider’s strategy, and, initially, we
assume that the topology of the graph does not constrain
the hider in this choice. Introducing a set of hidden objects
allows us to consider multiple hide points. We represent a
seeker’s traversal of a graph as one or a series of walks where
Wi = 〈vi0, vi1, . . . , vi`i〉. These walks begin at a given node

Table 1: Parallels between our hide-and-seek model
and features of the cyber security domain.

Model Entity Notation Feature of Cyber Domain
Hider H An adversary attacking a

network; an administrator
defending a network.

Seeker S An administrator defend-
ing a network; an adver-
sary attacking a network.

Hidden Items k, H Intermediate attack points;
known vulnerabilities.

Graph G, E and
Cost

The application-layer net-
work within which an at-
tacker exists; the network
within which a vulnerabil-
ity exists, such as an enter-
prise network; an abstract
representation of required
visitations.

Graph Size n The size of a network; the
number of tasks or stages
that must be traversed.

vi0 and traverse the intermediate edges to a node vi`i , where

(vij , v
i
j+1) ∈ E for 0 ≤ j < `. Let vi+1

0 = vi`i , so that a search
is a connected path through the network in an attempt to
locate all of the nodes in H. If a walk causes the seeker
to traverse one of these nodes, we say that the seeker has
successfully located a hidden object. We initially assume
that the seeker knows the value of k, and thus knows when
the search has ended.

2.2 Hide-and-seek for Cyber Security
In the opening section, we stated our belief that the game of
hide-and-seek shares many common principles with several
open problems in cyber security. Therefore, we aim to use
it as an abstract representation of these problems. In this
section, we continue to motivate this comparison by consid-
ering the relevance of each element of our model to the cyber
domain. A summary of this information is shown in Table
1.

Given our two agents, H and S, the most natural parallels
between our model and this domain occur when we frame S
as the network administrator in a secure infrastructure, and
frame H as an assailant on this infrastructure, attempting
to conceal his attack path. It is under this framing that
the game becomes analogous to the task faced in attack at-
tribution. Therefore, the aim of experimenting with search
strategies is to understand how best to discern a path to the
attacker, given their adversarial behaviour. Whilst this is
the most intuitive comparison, it is also possible to frame
this in the opposite way: the administrators are the hiders
wishing to conceal vulnerabilities, and it thus becomes im-
portant to understand how a seeker – in this case a hacker
– will attempt to locate these. Viewing the game in this
way also allows us to draw an additional analogy to the
problems faced by a network administrator wishing to de-
fend against a potential pivoting attack.2 That is, when

2Pivoting attacks leverage existing compromised systems to
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configuring the network, it is important for an administra-
tor to understand how a series of vulnerable systems may
be used to circumvent firewall restrictions, with the aim of
creating a path to a vulnerable host. Thus, the administra-
tor becomes the hider, strategically positioning these targets
within the network. Additionally, imagine, for example, a
service placement strategy in which an administrator wishes
to host services in different areas of the infrastructure. Many
factors could be considered in this decision including cost,
proximity to consumers, legal constraints and quality of ser-
vice requirements. This multi-faceted problem means that
security considerations might be compromised, e.g., host-
ing services in a mobile telecoms cloud might improve user
perceived performance but reduce security. In such a cir-
cumstance, using hiding strategies that mitigate the risk of
compromise becomes extremely desirable. Given these al-
ternate framings, it is important for us to understand the
performance of both hide and seek strategies, in the face of
varying adversaries.

In the problem of attack attribution, G represents an over-
lay network, a portion of the nodes of which (H) have been
compromised by H to conceal his origin. This is a practice
common in the use of Botnets3 or in the manipulation of
other application-layer proxies. Therefore, E serves as the
potential paths through this network to the location of the
attacker. Similarly, in the problem of pivoting, G represents
the private network within which a path of target hosts re-
sides. In these search spaces, we believe n should be as large
as possible, in relation to k (the number of attack points,
or potential target hosts), to reflect the complexity of each
search task. In addition to modelling real search spaces, we
believe that the process of graph traversal effectively models
the sequential nature of most search procedures within the
ecosytem of the Internet. For example, querying ISPs and
other stakeholders for data (e.g., packet traces and intru-
sion logs) requires many manual tasks, resulting in sequen-
tial preferential ordering of search points (imagine having to
separately contact 500 network operators).

Having drawn several parallels between the static elements
of our model and the cyber domain, we next consider a num-
ber of different strategies for both hiding and seeking (Table
2). These strategies could be adopted by the entities in the
specific security problems referenced or, in fact, any suitable
application case. Our aim in enumerating potential hide and
seek strategies (and their corresponding parameters) is to in-
troduce several ways to strategically engage in a game, and
thus understand how to act when faced with comparable sit-
uations in cyber security, and how to program agents to act
automatically.

3. STRATEGIES FOR HIDING
First, we consider strategies for hiding: either an attacker
trying to obfuscate its attack or an administrator trying to
hide their resources from such attackers.

3.1 Random Strategy
attack other systems within the same network, to an arbi-
trary length, in order to create an attack path to a targeted
host.
3A Botnet is a collection of compromised hosts, elicited by
a third-party in order to carry out large scale attacks.

Table 2: Summary of hide-and-seek strategies.
Name Agent Description
Stochastic Hider Objects are hidden at random.
Bias Hider Preference is expressed towards

a portion of nodes, when select-
ing where to conceal objects.

Random Seeker A search is conducted by ran-
domly selecting an outbound
edge when moving between the
nodes of a network.

Exploit Seeker The search path is adapted
to sequentially visit a set of
nodes that have been recorded
as likely to contain hidden ob-
jects.

In order to attain maximum payoff, a hider must conceal
his objects in a manner that will afford the seeker the high-
est cost. This would reduce the number of potential finders
and delay the remaining ones. Thus, it is rational for him
to consider each node as a hide location with equal proba-
bility: P (vi) = 1

n
. We refer to this as a stochastic hiding

strategy (Stochastic); intuitively, this strategy is optimal
for an ignorant hider, in that it is invariant under the choice
of search strategy. That is, we note that this optimality only
holds under the assumption that a hider has no knowledge
about the likely entry point of a seeker’s traversal. If they do
have this knowledge, it is clearly of more benefit to conceal
all objects as far from this entry point as possible.

3.2 Biased Strategy
In reality however, a hider who is able to demonstrate such
clinical objectivity is rare: they are, ultimately, human and
are thus either unable or unwilling to express true random-
ness. In the former case, we refer to the notion of the trem-
bling hand [15], in which human fallibility or other external
factors cause players in competitive games to unintention-
ally exhibit bias or repeat behaviour. These ‘trembles’ cause
a player to deviate from their optimal strategy. As men-
tioned, this can also manifest itself as bugs in software. In
the latter case, such deviations are purposeful on the part
of the hider; hiders do not wish to hide entirely randomly
as they develop subtle preferences for hide locations due to,
for example, the belief that some hiding locations may be
more ‘secretive’ than others. Rubinstein has shown this to
be true by examining real hider psyches, and demonstrating
that even the most subtle properties of hide location – their
relative positions, for example – can be used by a hider to
frame a location as being preferable [14].

This behaviour often emerges in the cyber domain due to in-
dividuals’ preferences and skill sets, which can often favour
certain infrastructure. In the problem of attribution, for ex-
ample, bias manifests itself as an attacker reusing proxies,
repeating spoof points or using the same source IP address.
This may be because an attacker prefers certain infrastruc-
ture, as stated above, or perhaps because he is simply unable
to randomise his access points. Conversely, in the problem
of attack pivoting, bias information is not necessarily the
product of certain behaviour, but can be any information
that allows a hacker to more easily locate and target vul-



www.manaraa.com

0

5

1

4

2

3

5

1

4

2

3

Figure 1: Alpern and Gal’s strategy proposes that
the search for a hidden object (in this instance, con-
cealed in node 4), should proceed either clockwise
or anti-clockwise around an Eulerian circuit, from a
starting point (0), with equal probability.

nerable hosts, perhaps running particular operating systems
with known vulnerabilities on intermediate machines.

As a result of these observations, we also introduce a bi-
ased hiding strategy into our model, Bias. That is, despite
the optimality of a uniform random distribution under hider
ignorance, hiders under this strategy make an irrational de-
cision, and favour a fixed number of nodes (q) by a factor
of b (thus, max b = n

q
). Formally, we wish to attain that for

certain bias nodes vj , P (vj) = bP (vi), therefore:

P (vi) =
1

n+ q × (b− 1)
(1)

P (vj) =
b

n+ q × (b− 1)
(2)

If q < k, then the remaining objects are hidden randomly.

4. STRATEGIES FOR SEEKING
Next, we consider strategies for seeking: either an attacker
trying to find vulnerable resources or an administrator try-
ing to find malicious entities. A random strategy is first
presented, before detailing a biased strategy for exploiting
known hider behaviour. Note that we do not present a full
exploration of the design space; instead, we focus on two
generic strategies that can be used to capture a variety of
more complex equivalents.

4.1 Random Strategy
An Eulerian Graph contains an Eulerian Path, a path that
visits each edge of a network exactly once. If we assume
that G is Eulerian, and the hider is uniform random in their
strategy, then a well-cited search strategy is one proposed
by Alpern and Gal. Under this strategy, a seeker traverses
the Eulerian Path either forwards or backwards, with equal
probability (shown in Figure 1 using a ring topology). For-
mally, given the closed walks W = 〈v0, v1, . . . , vn−1, v0〉 and
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Figure 2: The comparable performance of Alpern’s
strategy, and a sequential examination of the Eule-
rian Path. p = 0.23 (cl = .01).

W ′ = 〈vn−1, vn−2, . . . , v1, v0, vn−1〉, where the former con-
stitutes the nodes in the Eulerian Path and has length µ,
and the latter represents the path in reverse order, the au-
thors show that randomising between these walks with equal
probability ensures that the payoff from a game does not ex-
ceed µ/2. The choice between these two walks is made prior
to the start of the search, and the trajectory it dictates is
maintained until all hidden nodes are found. Despite the
prevalence of this strategy, and the upper bound it places
on the seeker’s payoff, in reality it affords us little improve-
ment on search cost beyond that of an examination of the
Eulerian Path (i.e. always going in the same direction). This
can be seen by running a simple simulation of two seekers on
an Eulerian Graph, the results of which are shown in Figure
2. In addition to this, due to its dependence on the existence
of such a graph, it is difficult to apply Alpern’s strategy to
many of the problems in cyber security; to assume that such
a circuit exists – and can easily be calculated – is unrealis-
tic in some of the complex networks where cyber security
problems lie.

Thus, we consider an additional random search strategy that
also considers a hider to be uniform random, but instead
only assumes that G is connected. This structure is far more
flexible as it can also capture situations where a high degree
of freedom is given to the seeker’s traversal. For example,
if seeking only requires sending a single probe to a host,
this can be done in any sequence without the constraints
of an Eulerian Path. This strategy can be modelled as a
random walk on the graph (Random). That is, a walk of
length `, 〈v0, v1, . . . , v`〉, where each vi+1 is a vertex chosen
at random from those nodes which are connected to vi.

4.2 Exploit Strategy
As previously discussed, agents often have a tendency to
show bias in their hiding behaviour. Consequently, it is log-
ical that seekers should be sensitive to this bias. Thus, an
alternate strategy emerges (Exploit) that aims to predict
the behaviour of an opponent, and then use this informa-
tion to guide the search. In order to predict behaviour, we
introduce the function Prob : V → [0, 1], that maps each
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node to a real number denoting the likelihood of H conceal-
ing an object in that node. For example, a poorly secured
node (e.g. an open relay SMTP server) would have a high
likelihood of attack. This probability value is derived from
an intermediate function, Freq : V → N, that maps each
node to a natural number denoting the number of times a
hider has chosen to conceal an object in that node. Ini-
tially, each value returned by Prob is equally weighted as
1
n

, but upon observing a hider’s behaviour, values are scaled
proportionally according to the following:

Prob(vj) =
Freq(vj)∑

vi∈V Freq(vi)
(3)

Thus, a crude form of learning takes place. We use the
parameter r to determine the portion of k hidden objects
that are located using this probabilistic information. If r =
1, only a single high probability node is used to guide the
search. Formally, let Pr0 = {Prob(v) | v ∈ V } be our set
of probability values and let T0 = {v ∈ V | Prob(v) =
max(Pr0)} be those values which are maximal amongst this
set. The node t0 is selected from T0 randomly. Let L0 =
{t0} hold this single node. Given this information, the walk
〈v0, v1, . . . , t0〉, denotes the initial search path, under the
constraint that the edges between v0 and t0 constitute the
edges in the shortest path. At node t0, if all elements of H
have not been located, a random walk is undertaken until
all concealed objects are found.

If r > 1, then multiple high probably nodes are used, and
determined as a set of the maximal nodes indicated by Prob.
To do this, the node that corresponds to the highest proba-
bility is considered first (selecting one randomly if multiple
maximal nodes exist), it is removed, and then the next most
likely considered until r likely nodes are found. We formalise
this inductively, such that Prk = {Prob(v) | v ∈ V \Lk−1},
Tk = {v ∈ V \ Lk−1 | Prob(v) = max(Prk)}, and tk is cho-
sen from Tk randomly. Thus, Lk = Lk−1 ∪ {tk} and the set
L =

⋃r−1
i=0 Li = Lr contains the r nodes.

To traverse the graph based on this information, a series of
r walks, 〈W0, . . . ,Wr〉, are produced, where the edges be-
tween vi0 and vi`i ∈ Wi constitute the edges in the shortest

path. Recall that vi+1
0 = vi`i . To incorporate the informa-

tion on high probability nodes, we ensure vi`i = ti. In other
words, this strategy chooses the first node in L, traverses the
shortest path to this node, and repeats this process until the
paths to all permitted high probability nodes have been tra-
versed. If, at this point, k items have not been located, the
graph is traversed according to a random walk until all hide
locations have been discovered. Note that our future work
involves expanding the sophistication of this biased strategy
to better model other real-world considerations of impor-
tance (e.g. urgency and cost).

5. SIMULATIONS AND RESULTS
In order to assess the relative performance of these search
strategies under different conditions, and against different
hiders, we translate the conceptual model detailed in the
previous sections into a simulation model. Our aim in doing
so is to dynamically observe the interactions between dif-

Table 3: Parameters in a game of hide-and-seek
Parameter Notation
Games per Simulation gps
Rounds per Game rpg
Topology top
Number of nodes in a graph n
Number of hide locations k
A hider’s bias b
Number of high probability nodes used in a
search

r

Proportion of hide locations which are bias q

8

9

11

12

14

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Hider Bias (b)

Random Exploit (r = 1)

A
v
e
ra

g
e
 C

o
st

 o
f 

G
a
m

e
s 

(l
o
g
2
)

Figure 3: The performance of a bias-sensitive strat-
egy against a random walk. (gps =100; rpg=120;
top=random; n=100; k=1) p = 1.36× 10−20 (cl = .01).

ferent agents, in order to gain the empirical perspective not
provided by existing analytic work [4, 1, 2]. We argue that
only by using this approach are we able to fully understand
the practical value of our strategies.

5.1 Methodology
Each simulation contains a number of games, and each game
consists of a number of rounds. Structuring our simulations
as individual games allows us to vary certain parameters,
the most pertinent of which are shown in Table 3. During
a round, H computes H and updates the network as such,
and S traverses the network until each element of H is dis-
covered. The presence of rounds gives a seeker with the
capacity for information collection (learning) the opportu-
nity to do so. We therefore view rounds as repeated inter-
actions between an attacker and a defender in the security
domain. The outcome of each interaction yields some in-
formation about the other’s strategy; for example, preferred
attack source points or favoured exploit paths. At the end
of each round we record the cumulative traversal cost in-
curred by the seeker. The average cost across all rounds in
a game becomes that game’s cost. Clearly, a seeker (a secu-
rity administrator) wishes to limit the measured cost, whilst
a hider (an attacker) wishes to inflate this figure.

5.2 Searching for a Single Object
We first consider the relative performance of SRandom and
SExploit, against HBias, when searching for a single hidden
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Figure 4: The performance of a bias-sensitive strat-
egy against a random walk, when it incorporates
different proportions of trend information into its
search. This is measured against a hider with known
bias. (gps=50; rpg=120; top=random; n=100; k=50)
p = 4.30× 10−7 (cl = .01).

object (k = 1). More specifically, we are interested in the
degree to which SExploit is able to exploit the biased be-
haviour of HBias, and if so, how much bias is required for
this exploitation to occur. To test this, we ran a number of
games in which we increased the bias of our hider, such that
0 ≤ b < n. This models a situation where an attacker is in-
jecting attacks on nodes with varying degrees of preference
for each node. Our evaluation topology in this instance is
randomly wired, where |E| = 3n to loosely ensure full con-
nectivity on initial generation. We consider c (the maximum
cost of traversing an edge in a random distribution) to be
100. The results of this simulation are shown in Figure 3.
The downwards curve in cost seen for SExploit shows us that
performance gains are attained when a seeker employs a
strategy that is sensitive to the bias of a hider. This is in-
tuitive as it allows a seeker (security administrator) to learn
the behavioural traits of a hider (attacker). However, the
gradient of this curve is by no means sharp, leading us to
conclude that the bias shown must be significant (b & 45)
before notable improvements in cost can be made: a dis-
covery that might exacerbate the complexity of preempting
attacks. Whilst this is not a positive result for the seeker,
it does tell us that a hider can afford to favour a particu-
lar node a significant amount, and still obtain a reasonable
payoff. Therefore, this suggests attackers could potentially
take a relatively lazy approach to hiding their attack points.

5.3 Searching for Multiple Objects
With k > 1, we again consider the relative performance of
SRandom and SExploit, against HBias. Recall that the parameter
r indicates the portion of high probability nodes that are
used by SExploit to guide a search. We consider the optimum
value of r given complete knowledge of a hider’s bias, and
no knowledge of this bias.

5.3.1 r-values with a known bias
Let q = k and b = n

k
, so that our hider conceals all objects

with maximum bias. In this scenario, we are interested in

the value of r that allows the Exploit strategy to maximise
its performance against HBias. To do this, r becomes the
primary variable in our simulations, such that 0 ≤ r < k,
and we increase k to a much larger value: 50.

The results of this simulation are shown in Figure 4. This
graph shows us that when r = k, maximum performance
is attained by SExploit, as it utilises complete information
on the hider’s behaviour to guide its search. Whilst this is
intuitive, the increase in performance attained by incorpo-
rating an increasing number of high probability nodes into
a search is not linear. Indeed, it is only when r ' k, that
performance is notably different from a random walk. This
contrasts with our natural assumption that additional infor-
mation, although still only partially contributing to the un-
derstanding of a hider’s behaviour, will always increase the
efficiency of a search. Knowing that additional information
does not necessarily equate to an increase in performance
has several implications for both a seeker and a hider.

Assuming that a seeker is in the process of gathering in-
formation on the behaviour of a hider, she should have no
incentive to include this information into her search unless
she has information on how ∼k objects are hidden (assum-
ing she knows the value of k). If the seeker does not have
sufficient information, she can expend less computational ef-
fort on conducting a random walk, and obtain comparable
performance. An information gathering process such as this
is common in the cyber domain, when a complete picture of
the hider’s behaviour (favoured proxies, for example) is not
always immediately clear, due to their obscurity. This result
also tells us the importance of having up-to-date behavioural
information, as any partial obsolescence of this data signifi-
cantly affects performance. Conversely, this graph tells the
hider the proportion of nodes that he can afford to be bi-
ased towards. That is, if we assume that bias is unavoidable
(as motivated in Section 3), the next best thing to consider
is the proportion of H that can contain bias nodes, without
the hider’s strategy becoming too predictable. As this graph
shows us that the seeker does not benefit from incorporating
information on high probability nodes into her search strat-
egy until she has information on ∼k of them, this also tells
us that the hider can afford to be biased towards ∼k nodes,
before he experiences a significant reduction in payoff.

5.3.2 r-values with unknown bias
In the previous section, we showed that the number of high
probability nodes that need to be incorporated into a search
in order to maximise performance against an entirely bi-
ased hider is equal to k. However, if q < k, then a portion
of objects may not be hidden with bias, but simply ran-
domly. More worryingly, not only may a portion of objects
be hidden randomly, but they may also be hidden with de-
ceptive intent, in order to purposefully allow a seeker to
learn incorrect patterns. This is a practice observed in the
cyber domain prior to large attacks. It is also motivated
by the graph in Figure 4, which shows us that only a small
amount of incomplete or inaccurate information can detri-
mentally affect the performance of a seeker, i.e. a hider can
easily undermine a search by introducing false information
into their knowledge base. In both these cases, searching
with probability information for all nodes may be mislead-
ing. Because of this, we again consider the performance
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Figure 5: The performance of a bias-sensitive strat-
egy against a random walk, when it incorporates
different proportions of trend information into its
search. This is measured against a hider with un-
known bias. (gps=50; rpg=120; top=random; n=100;
k=50) p = 0.00054 (cl = .01).

of the Exploit strategy under various values of r, but this
time when q is unknown. To do this, we ran a simulation,
again in which 0 ≤ r < k, but in each round q was selected
randomly, to reflect its unknown value. Figure 5 presents a
graph of this simulation, and shows comparable performance
between both strategies, regardless of the amount of prob-
abilistic information included in a search. Thus, faced with
an unknown ratio of objects hidden with bias to those hid-
den randomly (or with misleading trend information), the
choice of r becomes arbitrary. Indeed, we could even infer
that the choice of r should be random to provide a strate-
gically symmetric choice to the random selection of q. For
the hider, this information tells us that if he does have a
preference for certain locations, he should randomise which
of these locations are used, with each interaction that he has
with the seeker. By doing this, it is clear that the seeker’s
learning process is significantly impaired.

5.4 Summary of Results
From our investigation of hide-and-seek as a formal game, it
is clear that it possesses many difficult problems. Faced with
a hider who is entirely stochastic, a seeker must look to tra-
verse an Eulerian Path, if one exists, and if not, engage in a
random walk in order to ensure that all nodes are examined.
This is a costly activity. In reality, however, intuition and
existing studies have shown us that despite the rationality
of a uniform hide strategy, hiders often exhibit notable bias.
Given the reliable existence of this bias, we have shown that
a seeker is able to improve her performance by recording
a hider’s behaviour and producing predictive information
about his hiding strategy. Whilst it may be tempting to use
this information when it is available for a significant portion
of the k objects that need to be located, we have shown
that only once enough information is obtained to guide the
search towards nearly all the nodes in H, does performance
exceed that of a random walk. This information also shows
us that a hider can afford to be biased in some cases, with-
out immediately opening himself up to exploitation by the

seeker. If a seeker is unsure about the extent of a hider’s
bias, or suspects they have intent to exhibit false behaviour,
we have shown that the best she can do is to incorporate
information on an arbitrary number of hidden objects into
her search.

The difficulty of this game certainly reflects the difficulty of
those cyber problems with which it shares common princi-
ples. What we are able to now suggest, however, are certain
heuristics for how to act, given the results we have obtained.
For example, in the task of attribution, we are able to sug-
gest that a network administrator should not attempt to
create an attribution path to an attacker when she only has
information on a portion of his intermediate source points,
as this partial knowledge does not aid her in the discovery
of the remainder of the path. Instead, she should wait for
more holistic information, and in the interim, examine all
network connections in turn. This may not be entirely intu-
itive, as the administrator may be tempted to use any infor-
mation she has to guide her search, under the belief that as
she gains more knowledge she will attain linear performance
gains. If we consider our alternate framing, in which the
hider is instead a benevolent entity – specifically, an admin-
istrator preparing his network for a potential pivoting attack
– this result also tells us that whilst a large proportion of the
exploitative paths to certain targets in the network may be
known by the attacker, this does not necessarily mean that
other targets will be also easily be compromised. Again, this
may not be immediately intuitive.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a methodology that seeks
to abstract complex cyber security problems to more sim-
ple representations, in order to foster solutions that are not
overly complicated by lower-level concerns. Whilst we be-
lieve this is the most effective way to begin to solve difficult
cyber problems, it is important to acknowledge the sensi-
tivity of the results obtained to the parameters chosen for
simulation. That is, we acknowledge the impact that our
chosen variables are likely to have on the results, and make
it our primary point of future work to conduct further ex-
periments to measure this impact. We suspect, for example,
that the value of k, and the ratio of k relative to n, will
impact the performance of some of our strategies, and the
optimal configuration of their parameters (e.g. r = k may
not always allow a seeker to attain maximum performance
against a biased hider at varying values of k). We suggest
that to guide the choice of these parameters, it may be nec-
essary to source real security data.

In addition to this, we note the existence of a number of
cyber scenarios that are not constrained by any form of
conceptual topology, and thus for which our current model
does not serve as a suitable analogy. In these scenarios, the
seeker is able to move freely between hide locations, and
cost is instead attributed to an exploration of the node it-
self. Therefore, another key point of future work will be to
run a number of games without the presence of a topology,
using additional strategies as necessary. In doing this we
are likely to draw on the work of Lidbetter, amongst others,
who has proposed a strategy for node search which does not
consider the constraints of a network [11].
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Whilst this paper has considered hide-and-seek strategies
separately, we are also keen to investigate the potential for
the dynamic co-evolution and co-adaptation of strategies.
That is, by endowing our agents with the ability to both
learn their opponent’s strategy, and update their own, we are
interested in how each player’s performance adapts, given
the adaptation of their opponent. Specifically, we are in-
terested if any notable equilibria emerge. To help analyse
this phenomenon, we will use techniques from evolutionary
game theory, as in [12, 13], which have explored co-evolution
and co-adaptation marketplaces. Introducing a capacity for
co-evolution and co-adaptation into our model may also al-
low us to better explore the psychological element of the
game, if, for example, players attempt to deceive one an-
other about their chosen strategy, and this must be reasoned
about across many levels, as in [6].

Finally, we wish to expand our model of the hide-and-seek
paradigm. This expanded model is likely to feature a hider
that is constrained by the topology, yielding more diverse
hide strategies, or a hider who similarly tracks the behaviour
of a seeker; players with variable initial knowledge, who must
either learn the values of k or discern the topology of the
search space; and multiple hiders and seekers, organised into
a hierarchy of control.
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